12. Machine Learning

Chris Piech and Mehran Sahami

May 2017

Machine Learning is the subfield of computer science that gives computers the ability to perform tasks without
being explicitly programmed. There are several different tasks that fall under the domain of machine learning
and several different algorithms for “learning”. In this chapter we are going to focus on Classification and
two classic Classification algorithms: Naive Bayes and Logistic Regression.

1 Classification

In classification tasks, your job is to use training data with feature/label pairs (X, y) in order to estimate a
function y = g(x). This function can then be used to make a prediction. In classification the value of y takes
on one of a discrete number of values. As such we often chose g(x) = argmax P(Y =y|X).

In the classification task you are given N training pairs: (x(1),y(1)),(x® y@) . (x™) y™)) Where x() is
a vector of m discrete features for the ith training example and y(’) is the discrete label for the ith training
example.

In this chapter we are going to assume that all values in our training data-set are binary. While this is not
a necessary assumption (both naive bayes and logistic regression can work for non- binary data) it makes it
much easier to learn the core concepts. Specifically we assume that all labels are binary y() € {0,1} Vi and

all features are binary x j) e {0,1} Vi, j.

2 Naive Bayes algorithm

Here is the Naive Bayes algorithm. After presenting the algorithm I am going to show the theory behind it.

Training

The objective in training is to estimate the probabilities P(Y) and P(X;|Y) for all 0 < i < m features.
Using an MLE estimate:

(# training examples where X; = x; and Y = y)

X =x Y =v) =
P(Xi =i 2 (training examples where Y = y)

Using a Laplace MAP estimate:

(# training examples where X; = x; and Y = y) + 1

pH X = X; Y = =
X = x| 2 (training examples where Y = y) +2

Prediction

For an example with x = [x1,x2,...,X,], estimate the value of y as:
$ = g(x) = argmax P(X|Y)P(Y) This is equal to argmax P(Y = y|X)
y
m
=argmax | | p(X;=x|Y =y)p(Y =) Naive Bayes assumption
y i=1
m
=argmax) logp(X;=x;|Y =y)+logp(Y =y) Log version for numerical stability
y o=l

Note that for small enough datasets you may not need to use the log version of the argmax.

Theory

We can solve the classification task using a brute force solution. To do so we will learn the full joint distribu-
tion P(Y,X). In the world of classification, when we make a prediction, we want to chose the value of y that
maximizes: g(x) = argmax P(Y = y|X).

y

" 140. 9%
$ = g(x) = argmax P(Y|X) = argmax ;()’()) By definition of conditional probability
y y
= argmax P(X,Y) Since P(X) is constant with respect to Y
y

Using our training data we could interpret the joint distribution of X and Y as one giant multinomial with
a different parameter for every combination of X = x and ¥ = y. If for example, the input vectors are only
length one. In other words |x| = 1 and the number of values that x and y can take on are small, say binary,
this is a totally reasonable approach. We could estimate the multinomial using MLE or MAP estimators and
then calculate argmax over a few lookups in our table.

The bad times hit when the number of features becomes large. Recall that our multinomial needs to estimate
a parameter for every unique combination of assignments to the vector x and the value y. If there are x| = n
binary features then this strategy is going to take order &'(2") space and there will likely be many parameters
that are estimated without any training data that matches the corresponding assignment.

Naive Bayes Assumption

The Naive Bayes Assumption is that each feature of x is independent of one another given y. That assumption
is wrong, but useful. This assumption allows us to make predictions using space and data which is linear with
respect to the size of the features: &'(n) if |x| = n. That allows us to train and make predictions for huge
feature spaces such as one which has an indicator for every word on the internet. Using this assumption the
prediction algorithm can be simplified.

$ = g(x) = argmax P(X,Y) As we last left off
y
= argmax P(X|Y)P(Y) By chain rule
y
n A
= argmax H P(X|Y)P(Y) Using the naive bayes assumption

Y i=1
m

= argmax Z logp(X; =xi|Y =y)+logp(Y =y) Log version for numerical stability
y o=l

This algorithm is both fast and stable both when training and making predictions. If we think of each X;,y
pair as a multinomial we can find MLE and MAP estimations for the values. See the “algorithm” section for
the optimal values of each p in the multinomial.

Naive Bayes is a simple form of a field of machine learning called Probabilistic Graphical Models. In that
field you make a graph of how your variables are related to one another and you come up with conditional
independence assumptions that make it computationally tractable to estimate the joint distribution.

Example

Say we have thirty examples of people’s preferences (like or not) for Star Wars, Harry Potter and Lord of
the Rings. Each training example has x,x; and y where x; is whether or not the user liked Star Wars, x; is
whether or not the user liked Harry Potter and y is whether or not the user liked Lord of the Rings.

For the 30 training examples the MAP and MLE estimates are as follows:

X4 MLE Xo MLE MLE
Y 0 1 estimates Y 0 1 estimates Y # est.
0 3 10 | 0.10 0.33 0 5 8 |0147 0.27 0 13 | 043

13 | 0.13 0.43 1 7 10 | 0.23 0.33 1 17 | 0.57

For a new user who likes Star Wars (x; = 1) but not Harry Potter (x; = 0) do you predict that they will like
Lord of the Rings? See the lecture slides for the answer.

3 Logistic Regression

Logistic Regression is a classification algorithm (I know, terrible name. Perhaps Logistic Classification
would have been better) that works by trying to learn a function that approximates P(Y|X). It makes the
central assumption that P(Y|X) can be approximated as a sigmoid function applied to a linear combination
of input features. It is particularly important to learn because logistic regression is the basic building block
of artificial neural networks.

Mathematically, for a single training datapoint (x,y) Logistic Regression assumes:

m
P(Y =1[X=x)=0(z) wherez =6y + Y, 0ix;

i=1
This assumption is often written in the equivalent forms:

P(Y =1X=x)=0(0"x) where we always set xg to be 1
P(Y=0X=x)=1-0(68"x) by total law of probability

Using these equations for probability of ¥ |X we can create an algorithm that selects values of theta that max-
imize that probability for all data. I am first going to state the log probability function and partial derivatives
with respect to theta. Then later we will (a) show an algorithm that can chose optimal values of theta and (b)
show how the equations were derived.

An important thing to realize is that: given the best values for the parameters (0), logistic regression often
can do a great job of estimating the probability of different class labels. However, given bad , or even random,
values of 6 it does a poor job. The amount of “intelligence” that you logistic regression machine learning
algorithm has is dependent on having good values of 6.

Notation

Before we get started I want to make sure that we are all on the same page with respect to notation. In logistic
regression, 0 is a vector of parameters of length m and we are going to learn the values of those parameters

based off of n training examples. The number of parameters should be equal to the number of features of
each datapoint (see section 1).

Two pieces of notation that we use often in logistic regression that you may not be familiar with are:

m

6"x = Z 0ix; = 01x1 + 02x2 + -+ - + Opxy dot product, aka weighted sum
i=1
1
o(z) = 1 res sigmoid function
Log Likelihood

In order to chose values for the parameters of logistic regression we use Maximum Likelihood Estimation
(MLE). As such we are going to have two steps: (1) write the log-likelihood function and (2) find the values
of 6 that maximize the log-likelihood function.

The labels that we are predicting are binary, and the output of our logistic regression function is supposed
to be the probability that the label is one. This means that we can (and should) interpret the each label as a
Bernoulli random variable: ¥ ~ Bern(p) where p = ¢(67x).

To start, here is a super slick way of writing the probability of one datapoint (recall this is the equation form
of the probability mass function of a Bernoulli):

P(Y =y|X =x) = (67x)- [1 - (67x)] "
Now that we know the probability mass function, we can write the likelihood of all the data:

n
L(6) = HP(Y = y(i) |X = X(’)) The likelihood of independent training labels
i=1

n N, NN
—TJo(67xy". [1—0(9&0))}(-
i=1

Substituting the likelihood of a Bernoulli

And if you take the log of this function, you get the reported Log Likelihood for Logistic Regression. The
log likelihood equation is:

LL(6) = y(i) IOgG(GTX(i)) +(1 *y<i>)10g[1 _ G(GTx(i>)]

™

i=1

Recall that in MLE the only remaining step is to chose parameters (0) that maximize log likelihood.

Gradient of Log Likelihood

Now that we have a function for log-likelihood, we simply need to chose the values of theta that maximize
it. We can find the best values of theta by using an optimization algorithm. However, in order to use an
optimization algorithm, we first need to know the partial derivative of log likelihood with respect to each
parameter. First [am going to give you the partial derivative (so you can see how it is used). Then I am going
to show you how to derive it:

ILL(O) &

_ (i) _ T ()] ()
36, ; {y c(6'x") X;

Gradient Ascent Optimization

Our goal is to choosing parameters (6) that maximize likelihood, and we know the partial derivative of log
likelihood with respect to each parameter. We are ready for our optimization algorithm.

In the case of logistic regression we can’t solve for O mathematically. Instead we use a computer to chose
6. To do so we employ an algorithm called gradient ascent (a classic in optimization theory). The idea
behind gradient ascent is that if you continuously take small steps in the direction of your gradient, you will
eventually make it to a local maxima. In the case of logistic regression you can prove that the result will
always be a global maxima.

The update to our parameters that results in each small step can be calculated as:

JLL(8°Y)

1d

R BTy
J

n .
P Y
i=1
Where 7 is the magnitude of the step size that we take. If you keep updating 6 using the equation above
you will converge on the best values of 6. You now have an intelligent model. Here is the gradient ascent
algorithm for logistic regression in pseudo-code:

{Initialize: 6, =0 for all 0 £ j < m }

Repeat many times:

[gradient[j] =0 for all 0L j<m J

For each training example (x, y):

For each parameter j:

o - 1
gradient[j] += Zj (ZI - W)

{ 6; += m * gradient[j] for all 0 < j < m]

Pro-tip: Don’t forget that in order to learn the value of 6y you can simply define xq to always be 1.

Derivations

In this section we provide the mathematical derivations for the gradient of log-likelihood. The derivations are
worth knowing because these ideas are heavily used in Artificial Neural Networks.

Our goal is to calculate the derivative of the log likelihood with respect to each theta. To start, here is the
definition for the derivative of a sigmoid function with respect to its inputs:

0
a—c(z) =0(z)[1 —0o(z)] to get the derivative with respect to 0, use the chain rule
z

Take a moment and appreciate the beauty of the derivative of the sigmoid function. The reason that sigmoid
has such a simple derivative stems from the natural exponent in the sigmoid denominator.

Since the likelihood function is a sum over all of the data, and in calculus the derivative of a sum is the sum
of derivatives, we can focus on computing the derivative of one example. The gradient of theta is simply the
sum of this term for each training datapoint.

First I am going to show you how to compute the derivative the hard way. Then we are going to look at an

easier method. The derivative of gradient for one datapoint (x,y):

aLaLe(je) = ;@ylogG(GTx) + aaej(l —y)log[l — o(6"x] derivative of sum of terms
- -G(Gyrx) 1_16—(9yTX)] agejG(GTX) derivative of log f(x)
- :G(QyTX) 1 _16—(0yT)] o(6"x)[1 —o(87x)]x; chain rule + derivative of sigma
- _G(G%JX—)[T(_G(T;(%TX)J o(8"x)[1 - o(6"x)x; algebraic manipulation
= [y—o(0"%)]x; cancelling terms

Derivatives Without Tears

That was the hard way. Logistic regression is the building block of Artificial Neural Networks. If we want to
scale up, we are going to have to get used to an easier way of calculating derivatives. For that we are going
to have to welcome back our old friend the chain rule. By the chain rule:

JLL(8) _ JLL(6) Ip Where p = 6(6”x)

89]' ap TGJ
_8LL(6) dp 0Jz AT
= 9 5, TOJ Where z=60"x

Chain rule is the decomposition mechanism of calculus. It allows us to calculate a complicated partial deriva-

tive (aLaLg_B)) by breaking it down into smaller pieces.
LL(0) =ylogp+ (1 —y)log(1—p) Where p = 5(67x)
JLL(6 1-—
(8) Y =) By taking the derivative
dpp l-p
p=0(2) Where z = 07 x
d
a—p =0(z)[1 —0o(z2)] By taking the derivative of the sigmoid
b4
z=0"x As previously defined
d
2 _x j Only x; interacts with 6;
d6;

Each of those derivatives was much easier to calculate. Now we simply multiply them together.

JLL(6) JLL(G) dp 0z

89]- ap . aiz - (979]
1—
= [% - l_iy} -0(2)[1 = o(2)]-x; By substituting in for each term
Y 1—y} .

=|=——=| pll—p]-x; Since p = o(z

[p 1) PPl (2)
=p(1=p)—p(1-y)] x; Multiplying in
=[—rlx; Expanding
=[y—o(0"x)]x; Since p = 6(87x)

